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1. Introduction 

Modern smart munitions rely upon electronic assemblies (1).  These assemblies are often 
fabricated from commercial-off-the-shelf components that are not specifically designed to endure 
the harsh loading environment of a gun launch.  One method of qualifying these assemblies and 
components is to build the projectile prototypes and conduct live-fire tests until all design issues 
are resolved.  This approach is cost prohibitive.  Another approach is to simulate the launch 
environment using air guns.  While less costly, there are still drawbacks, including acquiring test 
units, simulating the combined loading environment of both setback and spin, and obtaining 
loading profiles that match both the gun launch peak load as well as load duration.  Finally, the 
finite-element (FE) modeling  approach can be used to construct numerical models of the 
components. 

While FE modeling allows numerous anticipated loading scenarios to be examined prior to 
actually testing hardware, issues related to the modeling process do arise.  These issues include 
model fidelity, numerical accuracy, material properties, interface and other boundary conditions, 
and solution time.  It would seem that in the design of smart munitions comprised of electronic 
components, we have simply traded cost issues associated with actual testing with numerical and 
other issues associated with the FE modeling process.  To some extent, this view is correct, 
which is why any proposed design is rigorously tested in an actual gun launch environment prior 
to fielding.  However, many of the modeling issues mentioned have been addressed by prior 
numerical studies such that, using reasonable engineering judgment, designs can be screened, 
thus reducing the required number of field tests.  One issue that has not been addressed 
satisfactorily, though, is the time required to complete a numerical analysis of a highly detailed 
FE model. 

It is now possible to include more details in the FE analysis with the enhanced pre/post-
processing tools because of advances in FE modeling tools, analysis codes, and the increase in 
hardware computational capabilities.  However, the inclusion of more details typically leads to 
longer analysis times.  In fact, there is a continuing trend towards including as much of the “real” 
physics as possible in FE models.  This conflicts with a designer’s need for quick analysis turn-
around times so that designs can be evaluated and improved. 

Techniques such as Guyan reduction have been used for static analysis to reduce the 
computational cost associated with the analysis of large, complex models (2).  These techniques 
have also been applied to transient analysis problems where inertial effects are important even 
though the applicability of these reduction techniques for this class of problems is questionable.  
Direct solutions, whether by implicit or explicit solvers, of the full model are thus often 
employed to avoid the questionable application of these numerical approximations on the time 
dependent solution, even though computational analysis time for these models is substantial 
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(3, 4).  The analysis time required for these models increases even more dramatically when the 
model length scales are highly disparate.  For instance, a typical artillery round is on the order of 
one meter in length, while the capacitors used in the electronic components are on the order of 
millimeters or less in size.  Inclusion of this small capacitor in the overall model is not feasible, 
since inclusion of these components in the model leads to excessive computational times, 
although it is the survivability of the electronic components that are of concern. 

A possible resolution to this issue is to develop a global/local modeling approach where the 
response of the small components, the local model, can be captured without necessarily 
including detailed FE models of these small components in the global FE model of the projectile.  
This approach would thus not incur the computational penalty due to the small time steps 
required if the detailed FE local models were included, as in a baseline FE model.  There are 
several variations to this global/local modeling.  One approach is to replace small components 
and intricate structures with generic coarsely-meshed representations that have material 
properties that approximate the response of the actual local structure and occupy the same 
volume (1).  The boundary conditions in these coarse representations may have significant 
errors, as well as other issues such as appropriate stiffness properties, mass densities and 
rotational inertia properties.  A second approach is to represent the local model as a rigid body.  
This approach for the overall model can solve some of the issues previously mentioned, but 
introduces concerns about the behavior of stress waves at the interface between the elastic and 
rigid parts of the FE model.  Still another approach is to simply replace the small components 
with lumped masses and ignore stiffness effects completely.  While this approach doesn’t 
preserve the volume requirements, it does work well for uniaxial response.  Finally, 
superelement formulations and Guyan reduction, or similar techniques, can be used to convert a 
local model into an equivalent superelement. 

These techniques can be grouped into static and dynamic reduction techniques (5).  The static 
reduction techniques, such as Guyan reduction, omit the inertial effect and focus on the system 
stiffness.  Similarly, the dynamic reduction techniques primarily focus on the inertial aspect of 
the system, but can also account for both the inertial and stiffness effects for a range of 
frequencies.   Among these dynamic techniques, the system equivalent reduction expansion 
process (SEREP) is a technique that can both reduce the number of degrees of freedom (DOF) 
and maintain the correct dynamic structural response for a user-selected frequency range.  
SEREP has traditionally been used to aid in correlating modal test data and modal numerical 
models for FE modeling validation.  However, the approach appears to be a viable method for 
representing the response of complex structures without incurring some of the deficiencies noted 
for other techniques.  Details of the theory behind SEREP can be found in several papers (6).  In 
this report, we describe a method for implementing SEREP into the Lawrence Livermore 
National Laboratory (LLNL) Dyna3d FE modeling software (7) to allow global/local analysis. 
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2. SEREP Implementation 

The idea of the proposed approach is to replace portions of the global structure with their modal 
representations to achieve faster solution times by effectively increasing the characteristic time 
step.  The difference between the SEREP approach and traditional modal analysis is that, while 
modal analysis solves the problem in terms of generalized modal DOF, SEREP reformulates the 
problem in terms of the physical DOF.  Therefore, a FE model can be partitioned into sections 
represented as traditional FE meshes while other sections are represented by their SEREP 
approximations.  Since both FE and SEREP formulations are in terms of the physical DOF, it is 
straightforward to relate the global and local DOF.  To illustrate and clarify this distinction, 
consider the simple model shown in figure 1(a).  This model was meshed traditionally, as seen in 
figure 1(a), and also using a mixed traditional-SEREP representation, seen in figure 1(b). 

 

Figure 1.  Baseline model with (a) standard FE mesh and (b) SEREP reduced model. 

In the standard modeling approach, either mesh congruency can be maintained at the interface 
between the two components such that all DOF at the interface are merged, or an interface can be 
defined which relates the DOF of one component to the other, as seen in figure 1(a).  In LS-
Dyna, or LLNL Dyna3d, this type of interface is referred to as a tied interface.  In general, it is a 
multipoint constraint equation.  Our implementation of SEREP can be viewed, although the 
analogy is not exact, as an extension of the multipoint constraint formulation since the DOF of 
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the global model are related by the SEREP representation of the local model through the retained 
mode shapes.  This is illustrated in figure 2 where node i and node j are related by the modal 
properties chosen for the representation of the local model.  This modal representation usually 
results in a full mass matrix for the generic case.  The mass matrix is not guaranteed to be full as 
some combinations of retained DOF and modes may lead to canceling of off-diagonal terms. 

 

 

Figure 2.  SEREP as a multipoint constraint approach. 

Implementation of the SEREP representation of the local model requires the construction of the 
global mass and stiffness matrices.  From Hopkins and Minnicino (5), the SEREP reduced mass 
matrix Ms, where the subscript s denotes SEREP reduced, is given by  

 TMTM l
T

s =  , (1) 

where Ml is the local mass matrix and the transformation matrix T is given by 

 1−Φ⎥
⎦

⎤
⎢
⎣

⎡
Φ
Φ

= rm
tm

rmT  ,                   (2)  

where the subscript r denotes the retained DOF, m denotes the retained modes, and t denotes the 
truncated DOF.  When r = m, the inverse required in equation 2 is the usual matrix inverse.  For 
the general case when r ≠ m, the inverse in equation 2 is the generalized matrix inverse (6).  
Substituting equation 2 into equation 1 allows the global mass matrix to be expressed as 
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1 1 1

1 1 ,

T T
rm rm rm rmT

s rm l rm rm l rm
tm tm tm tm

T T
rm rm rm rm

M M M

I

− − − −

− − − −

⎡ ⎤Φ Φ Φ Φ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= Φ Φ = Φ Φ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥Φ Φ Φ Φ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
= Φ Φ = Φ Φ

 , (3) 

where the orthogonality of the mass-normalized eigenvectors has been utilized.  This resultant 
matrix is singular if the number of retained DOF, r, is greater than the number of retained modes, 
m (6).  The meaning of the inverse shown in equation 3 depends on the dimensionality of 1−Φ rm .  
The superscript –T denotes the inverse of the matrix transpose, i.e., A-T = (AT)-1. 

This SEREP reduced local mass matrix is used to construct the global mass matrix 

 sd MMM +=
~ , (4) 

where Md is the diagonal mass matrix obtained from the elements in the global model (the d 
subscript denotes diagonal).  M~ is subsequently used to solve for the nodal accelerations of the 
global model  

 FMa 1~ −= . (5) 

M~  may be singular because Ms is singular, in which case, the normal inverse does not exist.  
The solution of equation 5 can still be determined using singular value decomposition (SVD) (8), 
but this approach is not discussed in this report.  In addition to being singular because of rank 
deficiency, the reduced mass matrix can also be ill-conditioned.  This can also lead to numerical 
problems with the SVD approach for solving for the response.  The results presented in this 
report are for SEREP models that have been constructed such that M~  is nonsingular and well-
conditioned. This was accomplished by selecting local model DOF which were on the boundary 
of the local model and had corresponding global model DOF associated with the local model 
DOF.  

Proper selection of the retained DOF depends upon the actual boundary conditions between the 
global and local models as well as consideration of the desired frequency response present in the 
local model’s SEREP representation. As a rule of thumb, all local modes below or near the 
highest frequency of interest should be selected.  Also, only selecting nodes on the interface 
between the global and local models typically leads to acceptable results.  Research is currently 
being conducted to develop more precise guidelines based on the modal characteristics of the 
local and global models. 

The previous formulation of the reduced mass matrix was implemented in LLNL Dyna3d.  A 
simple flowchart of the implementation is shown in figure 3. 
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Figure 3.  Simplified flow chart of SEREP implementation. 

It is seen that implementation in LLNL Dyna3d was fairly straightforward.  Routines were added 
to allocate storage arrays for the SEREP variables, initialize these arrays, and then calculate 
effective forces acting upon the nodes associated with the SEREP nodes.  Initialization of the 
reduced mass matrix, and the computation of its inverse, are done once during the initialization 
phase.  This information is saved so that computation of the nodal acceleration during the 
solution phase is efficient.  The only values that must be recomputed at every time step are the 
effective internal nodal-loads due to the SEREP effective stiffness.  These internal forces are 
computed using 

 nrrm
T

rmnr XF ,
1

1,
−−

+ ΛΦΦ= , (6) 

where Λ is a diagonal matrix of the  system’s eigenvalues and Xr,n are the nodal displacements at 
time tn of the retained nodal DOF. 

The time step cycle (9) that the solver uses to advance from tn to tn+1 is shown in figure 4, 
together with the modifications to the Dyna3d logic required to include SEREP loading. 

A time step in Dyna3d starts with the determination of the loads acting on the nodes.  First, we 
discuss the normal time step cycle for Dyna3d.  This cycle will be assumed to start at time t0 with 
all nodal displacements, velocities, accelerations, and applied forces known.  The nodal 
accelerations are very simple to compute because the Dyna3d formulation results in a diagonal 
mass matrix.  Thus, the nodal accelerations are given by  

 nn FMa 1
1

−
+ = . (7) 

The nodal velocities and displacements are subsequently computed using a central difference 
update scheme.  Technically, Dyna3d uses a strain and stress rate formulation.  However, for the 
sake of brevity, the cycle simply indicates that the strains are computed after the displacement.  
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Then, depending on the constitutive model, the element stresses are computed.  Finally, the 
gradient of the stress provides the internal forces.  This internal force is subtracted from the 
external applied forces on a nodal basis.  Finally, the cycle completes with the accelerations 
again being computed. 

Implementing SEREP involves introducing two changes into this time step cycle.  The first 
change, labeled “1” in figure 4, requires updating the nodal internal forces using equation 6.  
Entries in the force vector that are associated with SEREP DOF are temporarily saved for later 
use.  Dyna3d then computes the nodal accelerations via the normal update method, equation 7.  
However, this computation assumes that the mass matrix is diagonal, which for SEREP-related 
DOFs is not necessarily true.  Consequently, as indicated at “3” of figure 4, the actual nodal 
accelerations are computed using the previously stored force vector and the inverse of the mass 
submatrix that is associated with SEREP DOFs.  These accelerations are then used to replace the 
erroneous values, and the normal time step cycle continues.  This implementation thus requires 
minimal changes to the Dyna3d time step cycle, as seen in figure 4.  The most difficult aspect of 
the implementation was, in fact, determining how to setup the appropriate storage requirements 
for the implementation to ensure that Dyna3d storage requirements were not adversely affected.  

C
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Figure 4.  LLNL Dyna3d time step cycle. 

This implementation was initially tested using the simple 1-D discrete spring-mass model shown 
in figure 5.  This model was used to validate the implementation.  The local model consisted of 
the DOF associated with masses 1–4, while the global model consisted of the DOF associated  
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Figure 5.  Simple spring-mass model. 

with masses 1 and 4.  Thus, the DOF of masses 1 and 4 constitute the interface between the 
global and local models.  The local model’s equations of motion are given by 
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where the full mass of DOF 2 and 3, and half of mass associated with DOF 1 and 4 and the 
springs connecting these DOF, are considered to comprise the local model.  The global model’s 
equations of motion, based on the DOF associated with masses 1 and 4, together with the springs 
connected to the rigid walls, are given by 
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where a step load, F, was applied to mass 1.  The forces, f1(t) and f2(t), in equation 9 are the 
effective forces at the global/local interface.  The eigenvalues and eigenvectors for the local 
model were computed using equation 8 for free-free boundary conditions.  These 
eigenvalues/eigenvector pairs were used to construct the SEREP representation of the local 
model.  The numerical results for the complete spring-mass system were computed as the 
baseline response.  Two SEREP cases were then analyzed.  First, all modes for the local model 
were retained.  For this condition, the resultant equations of motion are identical to the baseline 
system.  In the second SEREP case, the highest eigenvalue was omitted, so only three modes 
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were retained for the local model: the rigid body motion and the first two elastic modes.  Results 
for the response at masses 2 and 4 for all three cases are shown in figure 6.  Both SEREP 
solutions are in excellent agreement with the baseline model.  The effect of neglecting the 
highest eigenvalue shows up as a slight difference in the response for this case as compared to 
the baseline case. This simple spring-mass model verified that the implementation into Dyna3d 
was correct.  Comparison of the baseline and SEREP results indicates that this approach 
represents a reasonable method of solving the global/local modeling problem.  It is important to 
realize that the current implementation of SEREP assumes that all modes below a given upper 
frequency are retained.  If the system shown in figure 5 was driven at a frequency higher than 
that of the greatest retained system natural frequency, then the error between the baseline 
solution and SEREP solution would increase. 

 

 

Figure 6.  Baseline and local results of the discrete spring-mass system. 

Next, the acceleration response of the model shown in figure 1(a) to a unit step load was 
computed.  Baseline results for the full model where all common interface nodes have been 
merged are shown in figure 7.  As seen previously in figure 1(b), 15 local model nodes at the 
global/local interface are merged because the meshes between the local and global models are 
non-congruent.  Therefore, these merged nodes are a subset of the complete set of interface 
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nodes.  The Y-direction stress results for the SEREP model, using these merged nodes at the 
interface, are shown in figure 8.  It is seen that the results at the interface are different, which is 
to be expected. However, the contour levels are very similar a short distance away from the 
interface.  Also note that this test case does not represent the best correlation that can be expected 
from this technique since not all interface nodes were used.  Regardless, the results are 
encouraging.  Using only the common interface nodes, the mass matrix that is inverted to solve 
for the nodal accelerations, step “A” of figure 4, is rendered nonsingular.  This is because the 
equation to be solved is given by 

 

 [ ] [ ]( )aMMaMF sd +== ~ , (10) 

 

where [ ]dM  is a diagonal mass matrix obtained from the single-point integration formulation of 
the FE elements at the global/local interface and the [ ]sM  is the potentially singular SEREP-
derived reduced mass matrix.  The addition of these two matrices, for this case, results in a 
nonsingular matrix that is invertible.  This is an empirical observation, since mathematically the 
resultant matrix could be singular for arbitrary matrices [ ]dM  and [ ]sM .  If internal DOF were 
selected from the local model for this case, then the resultant mass matrix is guaranteed to be 
singular. 

 

Figure 7.  Y Stress results of 3D model.  Baseline model results 
using only subset of interface nodes. 
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Figure 8.  Y Stress results of 3D model.  SEREP model results using 
subset of interface nodes. 

As was observed from the Y-direction stress global results, examining the principal stresses 
shows that the results are different near the interface but similar away from the interface, as seen 
in figures 9 and 10. 

 

Figure 9.  Principal stress at interface—baseline 
model. 

 



12 

 

Figure 10.  Principal stress at interface—SEREP 
model. 

This observation allows for the efficient computation of the high-fidelity local solution by 
applying the global solution as local model boundary conditions where the full and global 
solutions appear equivalent.  In a real structural analysis, the full system solution is not known 
and the correct global boundary condition is an engineering judgment based on the physics of the 
problem.  The appropriate boundary conditions to apply to the local model are the time 
dependent displacements.  Stress/time histories could also be used, but are more likely to 
introduce errors since stresses depend upon the displacement gradients.  While the displacements 
of the interface nodes themselves could be used, because of St. Venant’s Principle, the localized 
stresses, strains, and thus displacements of these nodal displacements are not representative of 
the actual system.  However, the use of nodes located away from the actual interface would 
provide a better local response where the new, high-fidelity local model now includes the 
original local model and a part of the original global model, the size of which is dictated by St. 
Venant’s Principle. 

For comparison with the previous models, results for a more representative model using a tied 
interface are presented in figure 11.  Unlike the SEREP or merged results presented previously, it 
is seen that the actual response at the interface is smooth.  Again, this difference is to be expected 
for the sample problem since not all of the interface nodes were used in either the SEREP or 
baseline models.   It is hypothesized that if the local model mesh is constructed such that all of 
the global model’s interface nodes have corresponding nodes in the local model, then a more 
accurate response can be obtained for both the global and local models.  This is inferred because 
the effect of point loading on the global model will be reduced if the global and local models are 
meshed such that the above mesh congruency is true. 
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Figure 11.  Effective stress at interface using a tied interface. 

3. Future Work 

Based on these preliminary results, the SEREP approach for global/local modeling presents a 
promising method for reducing a FE model’s complexity while retaining correct mass and 
stiffness effects.  Remaining issues which must be addressed include implementing a more 
robust SVD solver for finding solutions when the mass matrix is singular, automating the task of 
relating global and local DOF, and automating the selection of a proper set of local DOF so as to 
maintain accuracy in the global response calculation. None of these issues are intractable. They 
simply require diligence in formulating a reasonable modeling methodology such that this 
technique can be a useful tool for quickly analyzing proposed designs involving electronic 
components.  Future research will examine SEREP’s ability to use actual modal test data to 
generate the SEREP superelement for inclusion in the FE model.  This would be useful when 
construction of a representative FE model for a complex part cannot be obtained in a timely 
manner, but modal data either already exists or can be obtained. 
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   G DEWING 
   R DOWDING 
   W DRYSDALE 
   R EMERSON 
   D GRAY 
   D HOPKINS 
   R KASTE 
   L KECSKES 
   M MINNICINO 
   B POWERS 
   D SNOHA 
   J SOUTH 
   M STAKER 
   J SWAB 
   J TZENG 
  AMSRD ARL WM MC 
   CHIEF 
   R BOSSOLI 
   E CHIN 
   S CORNELISON 
   D GRANVILLE 
   B HART 
   J LASALVIA 

   J MONTGOMERY 
   F PIERCE 
   E RIGAS 
   W SPURGEON 
  AMSRD ARL WM MD 
   B CHEESEMAN 
   P DEHMER 
   R DOOLEY 
   G GAZONAS 
   S GHIORSE 
   M KLUSEWITZ 
   W ROY 
   J SANDS 
   D SPAGNUOLO 
   S WALSH 
   S WOLF 
  AMSRD ARL WM RP 
   J BORNSTEIN 
   C SHOEMAKER 
  AMSRD ARL WM T 
   B BURNS 
  AMSRD ARL WM TA 
   W BRUCHEY 
   M BURKINS 
   W GILLICH 
   B GOOCH 
   T HAVEL 
   C HOPPEL 
   E HORWATH  
   M NORMANDIA 
   J RUNYEON 
   M ZOLTOSKI 
  AMSRD ARL WM TB 
   P BAKER 
  AMSRD ARL WM TC 
   R COATES 
  AMSRD ARL WM TD 
   D DANDEKAR 
   M RAFTENBERG 
   S SCHOENFELD 
   T WEERASOORIYA 
  AMSRD ARL WM TE  
   CHIEF 
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 1 LTD 
  R MARTIN 
  MERL 
  TAMWORTH RD 
  HERTFORD SG13 7DG  
  UK 
 
 1 SMC SCOTLAND 
  P W LAY 
  DERA ROSYTH 
  ROSYTH ROYAL DOCKYARD 
  DUNFERMLINE FIFE KY 2XR 
  UK 
 
 1 CIVIL AVIATION 
  ADMINSTRATION 
  T GOTTESMAN 
  PO BOX 8 
  BEN GURION INTRNL AIRPORT 
  LOD 70150 
  ISRAEL 
 
 1 AEROSPATIALE 
  S ANDRE 
  A BTE CC RTE MD132 
  316 ROUTE DE BAYONNE 
  TOULOUSE 31060 
  FRANCE 
 
 1 DRA FORT HALSTEAD 
  P N JONES  
  SEVEN OAKS KENT TN 147BP 
  UK 
 
 1 SWISS FEDERAL ARMAMENTS 
  WKS 
  W LANZ 
  ALLMENDSTRASSE 86 
  3602 THUN 
  SWITZERLAND 
 
 1 DYNAMEC RESEARCH LAB 
  AKE PERSSON 
  BOX 201 
  SE 151 23 SODERTALJE 
  SWEDEN 
 
 1 ISRAEL INST OF TECHLGY 
  S BODNER 
  FACULTY OF MECHANICAL 
  ENGR 
  HAIFA 3200 
  ISRAEL 
 

 1 DSTO 
  WEAPONS SYSTEMS DIVISION 
  N BURMAN RLLWS 
  SALISBURY 
  SOUTH AUSTRALIA 5108 
  AUSTRALIA  
 
 1 DEF RES ESTABLISHMENT 
  VALCARTIER 
  A DUPUIS 
  2459 BLVD PIE XI NORTH 
  VALCARTIER QUEBEC 
  CANADA 
  PO BOX 8800 COURCELETTE 
  GOA IRO QUEBEC 
  CANADA 
 
 1 ECOLE POLYTECH 
  J MANSON 
  DMX LTC 
  CH 1015 LAUSANNE 
  SWITZERLAND 
 
 1 TNO DEFENSE RESEARCH 
  R IJSSELSTEIN 
  ACCOUNT DIRECTOR  
  R&D ARMEE 
  PO BOX 6006 
  2600 JA DELFT 
  THE NETHERLANDS 
 
 2 FOA NATL DEFENSE RESEARCH 
  ESTAB 
  DIR DEPT OF WEAPONS & 
  PROTECTION 
  B JANZON 
  R HOLMLIN 
  S 172 90 STOCKHOLM 
  SWEDEN 
 
 2 DEFENSE TECH & PROC 
  AGENCY GROUND 
  I CREWTHER 
  GENERAL HERZOG HAUS 
  3602 THUN 
  SWITZERLAND 
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 1 MINISTRY OF DEFENCE 
  RAFAEL 
  ARMAMENT DEVELOPMENT 
  AUTH  
  M MAYSELESS 
  PO BOX 2250 
  HAIFA 31021 
  ISRAEL 
 
 1 B HIRSCH 
  TACHKEMONY ST 6 
  NETAMUA 42611 
  ISRAEL 
 
 1 TNO DEFENSE RESEARCH 
  I H PASMAN 
  POSTBUS 6006 
  2600 JA DELFT 
  THE NETHERLANDS 
 
 1 DEUTSCHE AEROSPACE AG 
  DYNAMICS SYSTEMS 
  M HELD 
  PO BOX 1340 
  D 86523 SCHROBENHAUSEN 
  GERMANY
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